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Abstract. Wigner representations of the rotational motion of a rotator or spherical top, as well as
symmetrical and arbitrary tops are presented. The unique form of the transformations to these
representations is derived using a set of natural requirements. As a particular case of these
representations, a Wigner representation of angular momentum orientation is found. Relations
between this representation and those of irreducible tensor operators and coherent states are
established. For large angular momentun» 1, rough equations for the Wigner functions are
derived, and it is shown that they are similar to the well known equation for the Wigner function
for translational motion.

1. Introduction

Usually, when describing rotational motion in atomic or molecular physics, we use a quantum
mechanical approach, which is based primarily on/arrepresentation or an irreducible
tensor representation. Itis well known that the quantum equations for a density matrix in these
representations have a complicated form, and thus are difficult to solve. These difficulties
become even greater if the quantum system under consideration has large angular momentum
(I > 1), asistypical formolecules and atomic Rydberg states, wirere0—100. On the other

hand, it is clear that at this limit the classical description is more suitable and the equations
for the density matrix should be essentially simplified. However, there is no direct way to get
the classical limit of the quantum equations in these representations. A more appropriate way
to approach this limit may be found by the use of coherent state representation [1]. In [1]
the theory of the coherent states of an ensemble of two-level atoms [2] was generalized to
the description of atomic states degenerate with respect to angular momentum projection, and
balanced equations for diagonal elements of the density matrix in zeroth order of the parameter
1/1 were obtained.

In our opinion, the most suitable and straightforward way to approach the classical limit
in a quantum equation is the use of the Wigner representation of rotational motion. It is well
known, for example, that for translational motion the classical limit can be easily obtained by
the power-series expansion of the quantum equation for the Wigner function with respectto
So, one may expect that by expanding in the corresponding equation for the density matrix in
the Wigner representation of rotational motion with respect to powersioftis also possible
to get a correct classical limit.

Thus, the problem is to construct a transformation which leads to a Wigner representation
of rotational motion and to find a quantum equation for the Wigner function. The rotational
Wigner function and the associated correspondence between quantum operators and classical-
like functions have already been introduced for a rotator with a fixed axis of revolution and
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one degree of motional freedom [3, 4]. Dynamic equations for this kind of motion have been
discussed previously [5].

In a previous work [6] the following Weyl-like transformation was introduced:

' 2M

00, ¢) = ;e'q’mp(ll, M+ im|lp, M — m) cost = e (1.1)
wherep(l1, m1|l2, my) are the density matrix elements in the-representation. Although
the Wigner functionp (0, ¢) is a function of the discrete variabe by definition, atl > 1
this variable may be considered as continuous, where apgesio stand for the azimuthal
and polar angles of momentum orientation, respectively. By transformation (1.1) the quantum
equations forp (0, ¢) with the correct classical limit were obtained [6]. These equations
were applied to a number of problems: polarization phenomena in light spreading in a
resonance medium of two-level atoms or molecules [6], resonance excitation exchange between
particles [7], and quantum beats in molecules [8].

However, transformation (1.1) only leads to the Wigner representation of angular
momentum orientation and not the complete rotational motion.

Therefore, in this paper we construct a transformation providing Wigner representations
of complete rotational motion of a rotator or spherical top, as well as symmetrical and arbitrary
tops. As a particular result of these transformations the Wigner representation of the angular
momentum orientation can be obtained.

To find these transformations we adhere to the method proposed for the determination
of the Weyl transformation for the Wigner representation of translational motion [9]. In this
method, a set of requirements was formulated (Galilean invariance, reality, normalization,
marginal distribution, unitary, free-particle limit, etc) which lead to the unique transformation
to the Wigner representation of translational motion. Moreover, this set of conditions was
proven to be saturated, and one can use the reduced set of requirements to obtain the unique
transformation and some of these requirements may be replaced by others. For example, instead
of the requirement of Galilean invariance of uniform translation, we use the free-rotator limit
to obtain the unique form of the Wigner representation of rotational motion.

Then, in the following sections, the equations for the Wigner functions are derived,
the classical limit of the equations discussed, and the matrix elements of operators in these
representations found.

2. Wigner representation for a rotator

First, we consider a quantum rotator, assuming that it is the simplest case to find the
transformation leading to the Wigner representation of rotational motion. Later, this
transformation is extended to the cases of symmetrical and arbitrary tops.

In coordinate representation the density matrix of the rotator as well as of a spherical
top is a function of two pairs of angles, which define the orientation of the rotator in the
space:p(V1, B1lv2, B2). Herey andg are the azimuthal and polar angles of the rotator axis
orientation (figure 1). Later on, for brevity, instead of angles3 we use the directior of
the rotator axis.

We also use the ‘momentum’ ém-representation for the density matrix. The connection
between the coordinate and ‘momentum’ representations is given by the expansion

o0 [1 [2
p(sils) = Y Y D Vi (s1)Y,,(s2)p (s, mally, m2)

11,lb=0mi=—1y my=—1I5

Yin(s) = Yim (B, ¥).

2.1)
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Figure 1. Rotator.

HereY,,, (B, ¥) are spherical harmonics. The reciprocal of (2.1) is

p(ls. mallz. mz) = / Vi ()Y (s)p(stlsp) dsyds;  ds=singdpdy.  (2.2)

The Wigner function of the rotator must depend on the angular momentum of the tbtator
and on the orientation of its axis in the space. However, because the rotator axis is orthogonal
to angular momentum, it is sufficient to define the anglendicating the position of the
rotator axis in the plane orthogonal #o Thus, we introduce the following Wigner function:
o(J, 9,0, a). HereJ is the value of angular momentum apdandé are the azimuthal and
polar angles of the momentum orientation (figure 1). One may refj@dndwx as a triplet of
Euler angles. Rotating the system of coordinates through these angles in a standard manner,
one can bring the- andx-axes into coincidence with the direction Sfand with the rotator
axis, respectively.

Let us consider the linear transformation which leads to the Wigner representation

P(J»¢»9,Ol)=/U(J,¢,9,Ol|81; 52)p(s1]s2) dsy dsy (2.3)

where, at present, the kerriélis an unknown function. Substituting equation (2.1) into (2.3)
yields the transformation from the ‘momentum’ to the Wigner representation
pJ,¢,0,a) = Z U(J, 9,0, ally, my; lp, ma)p(ly, my|la, mp).  (2.4)
l1,my,lp,m2

The relation between both kernels is given by the equation
UJ, 9,0, a|ly,my; I, mp) = / U(J,$,0,als1; 52)Y, (51)Yim,(s2) ds1 dsz.

To find an explicit form of the kerndl, we use the same method as Kruger and Poffyn [9]
to evaluate the kernel of the Weyl transformation to the Wigner representation for translational
motion. Now we formulate a system of requirements; by satisfying these requirements, one
can obtain the unigue form of the kerrigl
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First, because the Wigner function is a real function and the density matrix is a Hermitian
matrix, the kernelU should also be Hermitian:

U(J, alsy; s2) = U*(J, afsz; s1). (2.5)

Here, for simplicity, we use the notatioh= (J, ¢, 0).

The kernelU should also be invariant under space reflection. For this transformation the
angles are changed as— « + 7, ¥ — ¢ + 7, B — m — B, whereas the direction of
remains the same. This means that

U(J,als1;82) =U(J,x+7| — s1; —82). (2.6)

Considerthe requirementfor rotational invariance. Itis well known that under infinitesimal
rotation of the coordinate system through an adgl@round an axi®, any functionA’ in a
new coordinate system is related to the same function in the initial coordinate system by the
equation

A =1 —isnbd)A (2.7)

where.J is the differential angular operator. A is a function of the triplet, 6, «, then the
circular components of this operator are [10]

Y .
0= —l—
¢
Ja= el rogel vl LD e
A= 5% | T8 T 50 T sine aa |

In the case when is a function of the angleg, g which define the rotator’s orientation in
the spacel = L, L is the orbital angular momentum operator with circular components

Lo= —i%
. i o . (2.9)
Li]_ = ﬁeﬂ:"/f [:F Ctgﬁw + |£i| .

In the new system of coordinates the Wigner functioq/, ¢, 6, @) must be related to the
density matrixp’(s1|s2) by the same transformation as (2.3). This requirement gives the
equation for the kerndl:

J+LY+ LU =o0. (2.10)

Here, the upper index dt denotes the angleg,, A1 or ¥», B> on which this operator acts.
Further, let us require that the quantum equation for a free rotator

o .1
(E - E(Al - Az)) p(silsz) =0 (2.11)
should be transformed into the equation of classical rotation in the Wigner representation
d 0
—+J—)p(J,9,0,0) =0. (2.12)
ot do

Here, we assume thiat= 1 and/ = 1, where/ is the rotator inertiamoment. In equation (2.11)
A1, are angular Laplacians acting g1, 81 andy,, B, respectively. This requirement gives
the following equation for the kernél:

(}(Al — Az) — IJi) U(J, Ol|$1; 82) =0. (2.13)
2 da
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Finally, we make the requirement that the expected value of any opetasocalculated in
the Wigner representation as in classical physics:

(A) = a2 /A(J a)p(J, o) dJ du dJ = JdJsin6do ¢.
This leads to the unitary condition for the keri&l
a2 / U(J, a|s1; s2)U*(J, a|sy; s5) dJ da = §(s1 — 87)8(s2 — s5). (2.14)

It worth noting that in deriving the explicit form for the kerngl, it is more convenient
to reformulate the above requirements for the kethel, ¢, 6, a|l1, m1; I, m2). In this way,
performing some straightforward algebra, one can find the following unique transformation
from thelm-representation to the Wigner representation:

p(J,9,0,a) = Z Zmzumzﬂ
lh

l1,my,lp,my Kk,q
x (=Dt L D (.6, ) p(ls, mylla, m2) (2.15)

where D, , (¢.6,) are Wigner D-functions andC; " . . are Clebsch-Gordan
coefﬂments [10]. Note that according to this transformation, the valskould be discrete:
J=(1+l+1))2.

The reciprocal of (2.15) is

V2K +1
l1, m1llp, mo) = 2J | ——§
p(l1, mq|ly, mp) = a2 JXK; NS 20 o+l

x (—=1)lz=mz (¢,0,0)p(J, ¢,0,a)sin0do dp doe.  (2.16)

11,m1;lp,—mo q l1=I>
3. Wigner representation for symmetrical and arbitrary tops

The orientation of an arbitrary and, in particular, a symmetrical top is defined by the triplet
of Euler angles), 8, £. Rotating the coordinate system through these angles in the standard
manner [10], one can superimpose the coordinate axes with the main axes of the top. So, the
anglesy, g have the same meaning as for the rotator, i.e. they define the space orientation of
one main axis of the top, and the anglelefines additional rotation around this main axis.
Therefore, the density matrix in the coordinate representation is characterized by six angles:
o (Y1, B1, 1|2, B2, £2) and in the ‘momentum’ aimk-representation by six integer numbers:

p(l1, m1, k1|lo, mo, ko). The relation between these representations is given by the following
expansion in thé-function basis:

P, Br. E1lV2, B2 £2) = Y V(@a+ D2z +1)

11m1k1 Izmgkg

X fo: x (V1. B, Sl)sz (W2 B, £2) pllamakallzmakz).

As we can see, unlike the case of the rotator, here the density matrix elementgky |lom ko)
depend on a new quantum numlierthe value of the angular momentum projection on the
main axis of the top.

The Wigner representation for a symmetrical top may be constructed in the same way
as for a rotator. An additional requirement for deriving the transformation kernel to the
Wigner representation is invariance with respect to rotation around the top axis of symmetry.
Furthermore, we require that the kinematic term in the quantum equation for the density matrix
of a symmetrical top should be transformed to the classical form in the Wigner representation.
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Let us define the Wigner function for the symmetricaltop s, 6, ¢, «, K, y). Here, the
variablesJ, 6, ¢, as before, characterize the value and orientation of the angular momentum,
angley defines the rotation of the top around its axis of symmetry &rid the projection of
the moment on this axis. Angtedefines the rotation of the top aroudd

The invariance with respect to the rotation of the top around its axis of symmetry gives the
following additional equation for the kerngl of transformation to the Wigner representation:

d d 0

In comparison with the rotator case (see equation (2.11)) the kinematic term in the equation
for the symmetrical top’s density matrix acquires a new term

il(az 82)(1//ﬂ€|¢ﬂ%‘) (3.2)

€E—- | —5 — —5 s , , , .

2 3512 8522 PV, P1,51|¥2, P2, 52

which has to be transformed to the corresponding classical-like term in the Wigner
representation

d
eKa—p(J,qb,Q,ot, K,y). (3.3)
Y

Here, the value indicates the difference between the inertia momérand the other two
identical inertia moments: € = /1’ — 1 for a symmetrical top.

The first of these conditions (3.1) for the transformation keiér, 6, ¢, o, K, y|l1,
ma, k1; I, m2, k») has the form

.
(— —1(ky —kz)) U=0.
dy
Hence, the kerndl depends oy as

U ~ gy ki—kz)

The second condition gives
ki + ko
5
ThusK, as well as/, has to be discrete and it may be an integer or half-integer.
So, we can determine the transformation to the Wigner representation lfrdm
representation for the symmetrical top:

[ 2c+1 ;
,0(.], ¢, 0,a,K, )/) = Z Z —82],[1+[2+182K’k1+k2ely(klikZ)
limaky,lomoky Kk,q ll + 12 +1

x (—1)z=m2 1 Dy (9,0, 0)p(l1, my, killa, ma, k). (3.4)

ly,maslp,—mp = q. =12
It is easy to test that this transformation turns into the corresponding transformation for
the rotator equation (2.15) if in (3.4) one puts= k, = 0.
The average in the Wigner representation for the symmetrical top is
1

2(2m)3

(A) = Z A(lymaks|lomoko) p (lomoka|limikilomoks) = Z J Z
S

lymaky,lomoka
X /A(J, ¢,0,a, K, y)p(J,¢,0,a, K, y)sind dd dp do dy. (3.5)

The quantum mechanical description of an arbitrary top is the same as for the symmetrical
top, so we can suppose that transformation (3.4) is also valid in the case of an arbitrary top.
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4. pOa-representation

Let us represent transformation (2.15) as

P $.0.0) = 82/ 1,51,4101,.1,(. 0, @) (4.1)
1,1,

wherep,, 1, (¢, 6, @) is defined as

Ve +1
,0,a) = Dleme D ,0,a)p(l1, milla, m
Ply.l, (¢ ) . q;mz W( ) l,my;lp,—my ™~ q,li—1 (¢ ):0( 1 ll 2 2)

(4.2)

which we call thep6«-function or thepbd«a-representation for the density matrix. This function
depends on the anglés¢, anda and it also depends on the quantum numbgesnd!,.

Thus, we divide transformation (2.15) into two particular transformations; one of
them (4.2) leads to thed«-representation and the second (4.1) to the complete Wigner
representation of rotator motion.

The transformation inverse to (4.2) is

1
oy, my|la, mp) = a2 / Z\/(ZK +DU+hL+ D

x (—1)lz=m2 D)1 (@.6,@)p1,(9.6,a)sind do dp dor. (4.3)

It is easy to find out that the average for th#x-functions has the form
(A= D Almll'm)p(U'm'Im)

' \m,m’

ly,my;l,—my

- 8_12 Sa+r+y / AL, 0, ) (¢, 0, a)sing do de do.
7T 7

Transformation (4.2) can be written as

2
pll,lz((pbv 6’ a) Z \/ll‘fl%l q, [1 ]2(¢ 6 a)pll lz(K Q) (44)

Here,p,, 1, (x, g) are the density matrix elements in the irreducible tensor representation
Pl q) = Y (=17mCyd ol malla. mo).
mi,mp

So, equation (4.4) establishes a relation betweemtherepresentation and the irreducible
tensor representation. According to equation (4.4), then, the elements of the density matrix in
the irreducible tensor representation are the coefficients afdhefunction expansion in the
D-function basis.

Consider the well known equality fdp-functions [10]

l lIo—m K,l
nﬁzl(ﬁb 0, O‘)sz lz(d)’e’a) Z( = 2C11m1 lo,—m> qll (.0, O‘)Czllll 122 I

which can be rewritten as
DY, (4.0, 0)D2 , (¢.0,a)

[ 2 *
- Z Pll I (x) l+l—+1( 1)12 mzcll my;lp, szg ) (¢.0,0) (45)
K.q
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where the facto®,, ;, () is

L+h+1 ., L+L+ D@L T?
[)ll,lz(K) = —Cll,,ll;lz,*lz = :
2k +1 I+l +k+ DI+ — k)]
In appendix A it is shown that the factdt, ;,,(x) depends om in the form« (x + 1).
Therefore, using the property of tiie-function
J?DS, _,(@.0.0) =k(k + )DL, ($.0. ) (4.6)

this factor in equation (4.5) can be replaced by operaﬁ&pj2 which is a function of the
differential operatot/2 and can be removed from the sum in equation (4.5):

’léjll(¢ 9 (X)sz lz(d)v 9’ (Y)

= PI1 122 I +12+1( 1)12_m2C11 ma;la, szZz 12(¢’ 0, a). (4.7)
Inthe casé; +1o+1 > |l — Io| we may use the approximation fBrlJz(fz) (see appendix A):
. (I — )2 — J?
P, ~exp| ———|. 4.8
I1,l> p|: 201 +1p+ 1) ( )
Using equation (4.7) we can write transformation (4.2) in the form
Pri(@.0.0) =P > D (¢.0.0)D2, | (¢.0.a)p(lamy|lamz)  (4.9)
nma,mp
and instead of (4.3) the reciprocal transformation can be written
L+h+1
pllumillzma) = ==

x/ (@, 0,0)DZ (0.0, )P} pi1, (¢, 0, @) SiNG d9 dp dor.  (4.10)
One can present equation (4 9) in the form

P11 (56, 0) = Py pjr 1, (¢, 0)€* 7 (4.11)
where

Prp(@.0)= D D (¢.0.0)D2, (.6, 0)p(ls, mallz, mp) (4.12)

mi,mp
is a covariant function in the coherent state representation [1]. Thus, equation (4.11) establishes
the relation between the coherent state andpthe-representation.
Finally, we establish the relation between th@x-functions and the representation of

angular momentum orientation which was introduced in [6] (see equation (1.1)). Thisrelationis
validinthelimitly, I; > 1. Indeed, using asymptotics for the Clebsch—Gordan coefficients [10]

2c+1 my +mp

K.q = (_1)12_’”2 5m1—m2 q q I1— lz(o 0, O) cost = m

Cll,ml:lzﬁWLz - 2; +1
which are valid afy, [, > «, we can replace th®-function in equation (4.2) by ¢ .
and sum ovey andk. In this way it is easy to obtain

5[1,12 (¢7 9) = 1011,]2 (d)s 97 O) = Z (SZM,m1+m2ei¢(m:l_mZ),O(l]_, m1|lg, m2)

my,ma

2M
1+ + 1
This coincides with the definition of the Wigner representation of angular momentum
orientation introduced in [6] (equation (1.1)).

CcosH =
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5. Matrix elements of operators in Wigner representations

Here we consider the form acquired by the tensor operators in the Wigner representation.
According to the Wigner—Eckart theorem, any tensor operatgrof rank «, has the
following matrix elements in thén-representation:

T}Kl —my K0
T;(llv ml|12$ m2) = ﬁ(_l)lz 2C11’,m1;lz,7m2' (51)

HereT}; ,, is the reduced matrix element of the operaf6r If 7* is Hermitian operator the
following equation is valid [11]:

K — (_ 11—12 K%
Tll.lz =(=1 leJl'

Applying transformation (4.2) to equation (5.1) and summing eveandm,, one can
obtain the matrix elements in thi@«-representation:

K

T,
TS0 (9,0, 0) = \/zlf—}il:ungl‘lz(‘l” 0,a). (5.2)

Now consider the form of the tensor operator in the Wigner representation of the rotational
motion of a top. If, in the coordinate system associated with the top, the operator has
components s, then in the laboratory coordinate system the operator's matrix elements in
Imk-representation are [12]:

V@ +DC* D) o o'

T (I, ma, kalla, ma, ko) = (=1)'2™2 S o imyCh bt T (5.3)
Applying transformation (3.4) to equation (5.3) and summing avgrm, we obtain
V(2 +1)(2+ 1)
T“(J,¢,0,0,K,y) =Y & 8 —1)fzrm
s (J. & Y) Z 20,13+12+102K ky+k, (—1) N Y
XD (@, 0,087Vl T (5.4)
Forly, I; >> 1 one can use the asymptotic form of the Clebsch—Gordan coefficients
, 2c+1 ki + ko
K,0 ~ (— lo—ko K —
kit~ D 5 g Do (00,00 eosh = m

which allow one to present equation (5.4) in the form
TS(J,$,0,0, K, y) =) Di"\(¢,0,0) D (v, 9, O TS,
A
Thus, in the Wigner representation of the top’s motion, the components of the tensor
operator in the laboratory coordinate system and the components in the coordinate system
associated with the top are related by two sequential rotations.

6. Quantum equation in Wigner representation

Usually, the equation for the Wigner function is in integral form and is not convenient for
applications. Therefore, instead of this integral equation, we will derive approximate equations
in differential form.

To obtain these new equations, we tdke> 1 as the primary condition. Moreover, we
stipulate thatl; — Io| <« 11, 1> for the matrix elementg,, ,,. This assumption is valid if
multipolaricity p of the interaction with the external field is not large. Indeed, the matrix
elements of the interaction potential differ from zerdlif — I5| < p, and for smallp (for
dipole interactiorp = 1, for quadrupole ong = 2, etc), the interactions bind the states which
are not widely spaced from each other in the numbeasd/,.
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6.1. Equation for th@6da-function

Now we deduce the quantum equation for the density matrix in the Wigner representation. We
begin by considering how the quantum equation
L0, N
1o p=1H. 7] (6.1)
is transformed in thed«-representation.

By using transformations (4.9) and (4.10) we can obtain the integral equation for the
¢ba-function

0
I_Pll,lzlolllz(R) =

. (htlz3+Dlz+l+ 1)
ot

D}, (R™*Ry) D, (Ry 1R)D,3, (R71R2)

(872)2
><([P1113 Hzlz3(R1)][Pz312 P11, (R2)] — [P1113 plllg(Rl)][P13[2 H,,,(R2)]) dR1 dR>.
(6.2)
Here, for simplicity, we use the notations
ou(R) = pii, (9,0, a) mlmz(R) ,nlmz(cﬁ 0, a) dR =sinf do d¢ da (6.3)
whereR defines the rotation
R = —igpJ. —|0J) e—lozfZ

by the triplet of Euler anglegf« and R~ defines the inverse rotation foand the relation
D) ..(R) =Dy (R (6.4)

mamy

is valid. Two consequent rotatiori® and R,, give the new position of the rotator which is
defined ask; R, and the following equation is valid:

Z Dm1m3 (Rl)Dllnzinz(Rz) = mlmz(RlR2) (6.5)
m3
For our purposes the following equality is useful:
~ l1+1+1 _ _ A
P (R) = = —— f Dy, (R™R) D, (RyR) By ont, (Ry) ARy (6.6)

which can be deduced by using transformations (4.9) and (4.10). It is also easy to deduce by
direct calculation that the following equation is valid:

o N l1++1 I 1 1
Py, 1, Jp1,1,(R) = e Dy, (R Rl)Dlzlz(Rl R)P, Il 7 01,1, (R1) dRy. (6.7)

By gcting on equation (6.7) with the operatbyone can extend equation (6.7) to any degree
of J.

Our aim is to derive the differential equation from equation (6.2). This can be done by
using the expansion (see appendix B):

SEACE

Dy, (Ry 1Rz)—ZW[J"1 D, (RDIJ, DL 1, (R2)]
k=0 )
A(ll)j(i)
A exp|: *13 } D, (RTHDE , (R2). (6.8)

Here the upper indices of operatofsndicate in which anglesp, 61, a1 OF ¢, 62, aio, they
act. To obtain the last equality in equation (6.8) we make some approximations in the sum
overk: we expand this sum over the infinite limit and keep only the terms such as

jOj@ k
[——1 1 (6.9)
I3
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of any degreek and neglect all other terms having, in comparison with (6.9), at least one
additional factor /3.

Next, let us consider the equation (6.2) in the particular system of coordinates where the
z andx axes coincide with vectaf and the rotator’s axis, respectively. Formally, for this we
have to pulR = R~! = 1in equation (6.2). Applying expansion (6.8) and integrating by parts
over R, and R, while taking into account the following equalities:

JOD}, (R) =0 J®Dp, (R;H =0
one can obtain
. 0 (htlz+ Dzt +1) _
Pty prp (D) = &2 D}, (R)DP (RyH D, (R D, (R2)
A1) 7 A .
xmm[—%fi}dﬂﬁme&ﬂUgbaaRQ]
—[ P o5 (RO Py Higi, (R2)]) Ry AR, (6.10)
If we utilize relations (6.6) and (6.7) the last equation can be rewritten in the form;
jOj@
,011 L) = Z exp|: ! :| (Pt Hiyty (DI Py o1, (D)]
%&w%mwmmam» (6.11)

The upper indices of the operatofsrepresent the number of the function on which they act,
i.e.

JEUTDAB = (J_1A)(Ju1B).
Further calculations can be made by using approximation (4.8) for opétatud the following
well known operator equality

eheB — eilABlgA+B _ JA.BlgBgh (6.12)
which is valid if
[A,[A, B]) = [B,[B, A]] = 0. (6.13)

Of course, being considered asB, the operators in the exponents of equations (4.8), (6.11)
have non-zero commutators (6.13). However, the commutations (6.13) decrease the power of
the operator by at least two and therefore, according to the accepted approximation, we may
neglect the terms arising due to commutations such as (6.13). Thus, the use of equality (6.12)
in our approximation is justified. Next we make use of the condition that the relations
JoVi 15 (1) = (I3 = 1) Vi, 15 ()
Jopis 1,(1) = (12 = 13) pry 1, (1)

are valid. In this way one can obtain, instead of equation (6.11), the following equation for
the pOa-function:

9 1 li+1 — 23
o 1 exp| (JOFP — jO ;@ +
pr e = ; p[( o) h+l+1 211+ +1)?

X[ Vi15(D) 13,1, (1) — o151, (1) Hp 1, (D] (6.14)

Equation (6.14) is written in the system of coordinates, where the direction of the angular
momentumn(¢6) coincides with the-axis. Obviously, the operator

2D 72 2D 72
IR -I5I9 (6.15)
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is not invariant with respect to coordinate rotation. Therefore, to obtain the equation for the
¢Oa-function which is valid in an arbitrary system of coordinates, one should replace operator
(6.15) by another operator which is invariant with respect to rotation (a scalar function) and is
equal to (6.15) if» coincides with the-axis. The unique operator satisfying these conditions
and which may be constructed using the vecttfs, J@ andn is

= —in(JY x J?).
The explicit form of this operator is
WHp = —n(JY x J?)Hp

. il a 0 0 d 9
=i|{— —cosf— | H o — H|l— —cos— )p|. (6.16)
¢ do d cosh d cosh ¢ ou
In this notation the final equation fgi«-function can be written as

1 I1— 13 b — I3
R ex | + +
p’”z() Z p[”’<11+12+1 201+ 15+ 172 2<zl+lz+1)2>]

X [Hlj_,l3 (R)/Ol3,12 (R) - IO11J3 (R) H13,12 (R)] . (6 17)

6.2. Equation for the Wigner function of a rotator

Now, let us derive the quantum equation for the rotator Wigner fungsigh ¢, 9, «). We
recall that the relation betweextJ, ¢, 0, «) andp;, 1, (¢, 0, @) is established by transformation
(4.1). Applying this transformation to equation (6.17), we have:

.0 N 1 i+ — 23
I—p(J,¢,0,a) = exp[lw (—+— 827 13+1+1
at 11,122;13 2J 8J2 e

X[Hiy 13($, 0, @) 15,1, (@, 0, &) — piy 1(¢, 0, ) Hiy 1, (¢, 6, )] (6.18)
By the transformation reciprocal to (4.1)

1 2n e
IOIJ_JZ (¢5 07 C() = Z Z 82J,l1+lz+1/ e How—a)(y 12)10(‘]7 ¢’ 95 C(]_) dal
J 0

we expres$;, ;, (¢, 0, o) andpy, 1, (¢, 6, ) inthe right-hand side of equation (6.18) in terms of
the corresponding Wigner functions. Then, summing éveg, I3, we can obtain the integral
equation

.0 1 (1 nh+l-=2]
i=p(), ¢, 0,00 =) |10 (55— =4
J1,J2,
2
X / eiza(-ll—J2)+i20t1(12—J)—i20(2(]1—J)
0

X[H(J1, 9,0, a)p(J2, 9,0, 22) — p(J1, ¢, 0, 2) H(J2, ¢, 0, ar2)] dery dera.
(6.19)

We can then presett (J;) as
0
H(J)=H(J +AJy) :exp(Ale) H(J) Alh=J1—J
and the same fas (J,). Furthermore, the equalities

AJeZi(afo/)AJ — lieZi(afo/)A.l — _leZi(afa')A‘/i
200’ 2 da’
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(the last of which is obtained by integrating by parts av@rmllow us to replace\ J; andA J,
in equation (6.19) by the rule
AJ]_—)—I—i AJz—)li.
20wy 200,
Making use of the operator equality (6.12) and the fact that at the Jimit oo, the sum over
integer and half-integet J
Z g2e=AS L 2n§(a — &)

AJ=—J
we can obtain the equation for the Wigner function of a rotator:

d [
i—op=exp|=W|[Vp—pV 6.20
sor =] 5 |1vo - V) (620
where the new operatd¥ is also represented by Poisson brackets
N o 0 a 0 a 9 a 0
WAB= —A—B+—A—B A—B— —A—B. (6.21)

oM~ aa 9] M a¢ aJ da
HereM = J cosf. Note that in equation (6.2Q) and H are functions of/, M, ¢, «.
Thus, we can see that the pagrsM anda, J play the role of canonical variables.

6.3. Equation for Wigner function of symmetrical and arbitrary top

The equation for the Wigner function of a symmetrical or an arbitrarptop o, M, ¢, K, y)

can be obtained in a similar way as was done for the rotator’s Wigner function. This equation
has the same form as equation (6.20), with only one difference: the op¥fd@®1) should

be generalized as

Wap= Al psd 0 p 0,0 p 9,0, 9, 0 0,0,
¢ M~ 3y 9K da 9 oM oap 9K dy  dJ oa

6.4. Classical limit of the quantum equation for Wigner functions

The classical limit of these equations can now be immediately obtained. Let us consider, for
example, equation (6.17) for the Wigner function in gfeex-representation. If we replace the
exponent in equation (6.17) by one (it corresponds to the limit co) we obtain

0 0 o) = O 0. ) — 0. H®
| pl1,lz(¢ﬂ ,Ol) — ,011,12(¢a ,O[) 10]1,12(¢a ,O[) I

ot
D [Viis($, 6, 0)p1 (8, 6, @) = pi,15($, 6, @) Viy (¢, 6, )] (6.23)
I3

Here we putd = H© +V, whereH © is the Hamiltonian of a free atom or molecule anis

the interaction potential of an external field inducing the transitions between the internal states
of the quantum system. As can be seen from equation (6.23), in thé limito the dynamic

term in equation (6.23) does not describe the motion of the angular momentum orientation
because the external field causes the transitions between different states without changing the
angular momentum orientation. One feature of these equations is that they have the form of the
equations of a density matrix in the model of non-degenerate states, and the degeneracy upon
projection of angular momentum is included in equation (6.23) as a parametric dependence on
¢,0,ainV andp. Thus, all the results obtained for non-degenerate states can be generalized
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by equation (6.23) to the case of degeneracy, and it only remains for us to properly average
overg, 0, « in the final formulae obtained in the non-degenerate states model.

We must note that equation (6.23) can also be derived using a coherent state representation
[1]. Thus, we may conclude that in the approximatién+ oo), the Wigner¢da and
the coherent state representations lead to an identical description of the angular momentum
orientation of a quantum system.

The next term of the exponential expansion in equation (6.17) gives the new equation for
the Wigner function in th@d«-representation

0 0 o) = O 0. ) — 0. H®
| 1011,[2 (¢, ’ a) - ]1 pl1,l2 (¢7 ’ a) pll,lz (¢7 ’ CY) ]2

ot
+Y Vi@, 0, )1 1,($, 0, @) = p1s($, 0, ) Vi, 1,6, 6, )]

I3

1 1+ — 23 R
+ + V 5 6, ) 91
; (11 A1 2L+ 1) [WVi15(9, 6, @) p1s.1,(9, 0, 00)

—12),011’13((1),9,0[)‘/]3’12((1),9,0[)]. (624)

This equation was derived in [6]. The first dynamic term in equation (6.24) has the same
meaning as in equation (6.23), but the second term describes the angular momentum precession
caused by an external field. To clarify this picture, we consider the equation for a structureless
particle withV,, ,(¢, 8, ) = 8,,,,V(n). In this case the equation (6.24) is reduced to

3
V(n)—p(n)} (6.25)

D o= L2 B
P Y ™) = Teos ' ™3

I 19¢ "™ocoss”
which has the form of the Liouville equation for a classical rotator.
The classical limit of the equations for the Wigner functions of a rotator or top can be
obtained by the same procedure.

7. Conclusion

We have presented here the Wigner representation of rotational motion. As particular cases,
the Wigner representations of angular momentum orientation, rotational motion of a rotator or
a spherical top, as well as of a symmetrical and an arbitrary top, were considered. The unique
form of transformations which lead to these representations was found on the basis of a set of
natural requirements, including rotational and space reflection invariance, the averaging rule,
the reality of Wigner functions, and the classical form of equations for free-rotational motion.

The relations were established between the Wigner representation of angular momentum
orientation and irreducible tensor operators, coherent states and representation, which was
introduced in [6].

In addition, we derived the equations for the Wigner functions, which have forms
anologous to the equations of translational motion.
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Appendix A
The factor
1

[+l +1 0 (I + 15+ 1)(201)!(215)! 2

Pk = ——C} 2, =
2 () 2+1 il T (ke DI+ — k)

can be presented in the following form:

K n 111 n
log [T-a(1— 71,71 —log [t = I#1,71)
[T+ i) e @+ i)

Ii—1—1
- ; Iog(l l+l+1> Zlog< 11+lz+1)
+

;log( ll+12+1) Zlog( ll+12+1)

Expanding the logarithms in a Taylor series with respect to the param#&ier+ [, + 1) and
summing oven [13], we arrive at
(W= — kG +D

2(1+12+ 1)

2 |Og Pll,lz (k) =

|Og Pl1,12 (k) =~

Appendix B

According to (6.5)nyl(Rl*1R2) can be expressed as

l
D (R{"R2) = Y Dl /(¢1.61, 1) D}, (b2, 02, r2). (B.1)

m=—I

From the property of thé®-functions [10]
\/(1 +m)(l —m+ 1)

JuD!, (9.0, ) h11(9.0.0)

[ 2621 — k)! .
D (9.0, 0) = W]&p,{]@, 0,a).

Using this equation and ; = f:‘l one can rewrite equation (B.1) as

it follows

D! (R-IR,) = L 252 =0 a0 CDl% (¢, 1, a1) D! P
1 (R 2)—2(21)—%,0 LI Dl (¢, 61, 1) D] (B2, 62, )
£ Ikl

3 2@ - 7D 7Q\k ! -1
Z (21)'k' (J T D (RTY Dy (Ry).
P
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