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Abstract. Wigner representations of the rotational motion of a rotator or spherical top, as well as
symmetrical and arbitrary tops are presented. The unique form of the transformations to these
representations is derived using a set of natural requirements. As a particular case of these
representations, a Wigner representation of angular momentum orientation is found. Relations
between this representation and those of irreducible tensor operators and coherent states are
established. For large angular momentuml � 1, rough equations for the Wigner functions are
derived, and it is shown that they are similar to the well known equation for the Wigner function
for translational motion.

1. Introduction

Usually, when describing rotational motion in atomic or molecular physics, we use a quantum
mechanical approach, which is based primarily on anlm-representation or an irreducible
tensor representation. It is well known that the quantum equations for a density matrix in these
representations have a complicated form, and thus are difficult to solve. These difficulties
become even greater if the quantum system under consideration has large angular momentum
(l � 1), as is typical for molecules and atomic Rydberg states, wherel ≈ 10–100. On the other
hand, it is clear that at this limit the classical description is more suitable and the equations
for the density matrix should be essentially simplified. However, there is no direct way to get
the classical limit of the quantum equations in these representations. A more appropriate way
to approach this limit may be found by the use of coherent state representation [1]. In [1]
the theory of the coherent states of an ensemble of two-level atoms [2] was generalized to
the description of atomic states degenerate with respect to angular momentum projection, and
balanced equations for diagonal elements of the density matrix in zeroth order of the parameter
1/l were obtained.

In our opinion, the most suitable and straightforward way to approach the classical limit
in a quantum equation is the use of the Wigner representation of rotational motion. It is well
known, for example, that for translational motion the classical limit can be easily obtained by
the power-series expansion of the quantum equation for the Wigner function with respect to ¯h.
So, one may expect that by expanding in the corresponding equation for the density matrix in
the Wigner representation of rotational motion with respect to powers of 1/l, it is also possible
to get a correct classical limit.

Thus, the problem is to construct a transformation which leads to a Wigner representation
of rotational motion and to find a quantum equation for the Wigner function. The rotational
Wigner function and the associated correspondence between quantum operators and classical-
like functions have already been introduced for a rotator with a fixed axis of revolution and
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one degree of motional freedom [3,4]. Dynamic equations for this kind of motion have been
discussed previously [5].

In a previous work [6] the following Weyl-like transformation was introduced:

ρ(θ, φ) =
∑
m

eiφmρ(l1,M + 1
2m|l2,M − 1

2m) cosθ = 2M

l1 + l2 + 1
(1.1)

whereρ(l1, m1|l2, m2) are the density matrix elements in thelm-representation. Although
the Wigner functionρ(θ, φ) is a function of the discrete variableθ , by definition, atl � 1
this variable may be considered as continuous, where anglesφ andθ stand for the azimuthal
and polar angles of momentum orientation, respectively. By transformation (1.1) the quantum
equations forρ(θ, φ) with the correct classical limit were obtained [6]. These equations
were applied to a number of problems: polarization phenomena in light spreading in a
resonance medium of two-level atoms or molecules [6], resonance excitation exchange between
particles [7], and quantum beats in molecules [8].

However, transformation (1.1) only leads to the Wigner representation of angular
momentum orientation and not the complete rotational motion.

Therefore, in this paper we construct a transformation providing Wigner representations
of complete rotational motion of a rotator or spherical top, as well as symmetrical and arbitrary
tops. As a particular result of these transformations the Wigner representation of the angular
momentum orientation can be obtained.

To find these transformations we adhere to the method proposed for the determination
of the Weyl transformation for the Wigner representation of translational motion [9]. In this
method, a set of requirements was formulated (Galilean invariance, reality, normalization,
marginal distribution, unitary, free-particle limit, etc) which lead to the unique transformation
to the Wigner representation of translational motion. Moreover, this set of conditions was
proven to be saturated, and one can use the reduced set of requirements to obtain the unique
transformation and some of these requirements may be replaced by others. For example, instead
of the requirement of Galilean invariance of uniform translation, we use the free-rotator limit
to obtain the unique form of the Wigner representation of rotational motion.

Then, in the following sections, the equations for the Wigner functions are derived,
the classical limit of the equations discussed, and the matrix elements of operators in these
representations found.

2. Wigner representation for a rotator

First, we consider a quantum rotator, assuming that it is the simplest case to find the
transformation leading to the Wigner representation of rotational motion. Later, this
transformation is extended to the cases of symmetrical and arbitrary tops.

In coordinate representation the density matrix of the rotator as well as of a spherical
top is a function of two pairs of angles, which define the orientation of the rotator in the
space:ρ(ψ1, β1|ψ2, β2). Hereψ andβ are the azimuthal and polar angles of the rotator axis
orientation (figure 1). Later on, for brevity, instead of anglesψ , β we use the directions of
the rotator axis.

We also use the ‘momentum’ orlm-representation for the density matrix. The connection
between the coordinate and ‘momentum’ representations is given by the expansion

ρ(s1|s2) =
∞∑

l1,l2=0

l1∑
m1=−l1

l2∑
m2=−l2

Yl1m1(s1)Y
∗
l2m2
(s2)ρ(l1, m1|l2, m2)

Ylm(s) = Ylm(β,ψ).
(2.1)
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Figure 1. Rotator.

HereYlm(β,ψ) are spherical harmonics. The reciprocal of (2.1) is

ρ(l1, m1|l2, m2) =
∫
Y ∗l1m1

(s1)Yl2m2(s2)ρ(s1|s2) ds1 ds2 ds = sinβ dβ dψ. (2.2)

The Wigner function of the rotator must depend on the angular momentum of the rotatorJ ,
and on the orientation of its axis in the space. However, because the rotator axis is orthogonal
to angular momentum, it is sufficient to define the angleα indicating the position of the
rotator axis in the plane orthogonal toJ . Thus, we introduce the following Wigner function:
ρ(J, φ, θ, α). HereJ is the value of angular momentum andφ andθ are the azimuthal and
polar angles of the momentum orientation (figure 1). One may regardφ, θ andα as a triplet of
Euler angles. Rotating the system of coordinates through these angles in a standard manner,
one can bring thez- andx-axes into coincidence with the direction ofJ and with the rotator
axis, respectively.

Let us consider the linear transformation which leads to the Wigner representation

ρ(J, φ, θ, α) =
∫
U(J, φ, θ, α|s1; s2)ρ(s1|s2) ds1 ds2 (2.3)

where, at present, the kernelU is an unknown function. Substituting equation (2.1) into (2.3)
yields the transformation from the ‘momentum’ to the Wigner representation

ρ(J, φ, θ, α) =
∑

l1,m1,l2,m2

U(J, φ, θ, α|l1, m1; l2, m2)ρ(l1, m1|l2, m2). (2.4)

The relation between both kernels is given by the equation

U(J, φ, θ, α|l1, m1; l2, m2) =
∫
U(J, φ, θ, α|s1; s2)Y

∗
l1m1
(s1)Yl2m2(s2) ds1 ds2.

To find an explicit form of the kernelU , we use the same method as Kruger and Poffyn [9]
to evaluate the kernel of the Weyl transformation to the Wigner representation for translational
motion. Now we formulate a system of requirements; by satisfying these requirements, one
can obtain the unique form of the kernelU .
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First, because the Wigner function is a real function and the density matrix is a Hermitian
matrix, the kernelU should also be Hermitian:

U(J, α|s1; s2) = U ∗(J, α|s2; s1). (2.5)

Here, for simplicity, we use the notationJ = (J, φ, θ).
The kernelU should also be invariant under space reflection. For this transformation the

angles are changed asα → α + π , ψ → ψ + π , β → π − β, whereas the direction ofJ
remains the same. This means that

U(J, α|s1; s2) = U(J, α + π | − s1;−s2). (2.6)

Consider the requirement for rotational invariance. It is well known that under infinitesimal
rotation of the coordinate system through an angleδη around an axisb, any functionA′ in a
new coordinate system is related to the same function in the initial coordinate system by the
equation

A′ = (1− iδηbĴ)A (2.7)

whereĴ is the differential angular operator. IfA is a function of the tripletφ, θ, α, then the
circular components of this operator are [10]

Ĵ0 = −i
∂

∂φ

Ĵ±1 = i√
2

e±iφ

[
∓ ctgθ

∂

∂φ
+ i

∂

∂θ
± 1

sinθ

∂

∂α

]
.

(2.8)

In the case whenA is a function of the anglesψ, β which define the rotator’s orientation in
the spaceĴ ≡ L̂, L̂ is the orbital angular momentum operator with circular components

L̂0 = −i
∂

∂ψ

L̂±1 = i√
2

e±iψ

[
∓ ctgβ

∂

∂ψ
+ i

∂

∂β

]
.

(2.9)

In the new system of coordinates the Wigner functionρ ′(J, φ, θ, α) must be related to the
density matrixρ ′(s1|s2) by the same transformation as (2.3). This requirement gives the
equation for the kernelU :

(Ĵ + L̂(1) + L̂(2))U = 0. (2.10)

Here, the upper index of̂L denotes the anglesψ1, β1 orψ2, β2 on which this operator acts.
Further, let us require that the quantum equation for a free rotator(

∂

∂t
− i

1

2
(11−12)

)
ρ(s1|s2) = 0 (2.11)

should be transformed into the equation of classical rotation in the Wigner representation(
∂

∂t
+ J

∂

∂α

)
ρ(J, φ, θ, α) = 0. (2.12)

Here, we assume that ¯h = 1 andI = 1, whereI is the rotator inertia moment. In equation (2.11)
11,2 are angular Laplacians acting onψ1, β1 andψ2, β2, respectively. This requirement gives
the following equation for the kernelU :(

1

2
(11−12)− iJ

∂

∂α

)
U(J, α|s1; s2) = 0. (2.13)
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Finally, we make the requirement that the expected value of any operatorÂ is calculated in
the Wigner representation as in classical physics:

〈Â〉 = 1

8π2

∫
A(J, α)ρ(J, α)dJ dα dJ = J dJ sinθdθ φ.

This leads to the unitary condition for the kernelU :

1

8π2

∫
U(J, α|s1; s2)U

∗(J, α|s′1; s′2) dJ dα = δ(s1− s′1)δ(s2 − s′2). (2.14)

It worth noting that in deriving the explicit form for the kernelU , it is more convenient
to reformulate the above requirements for the kernelU(J, φ, θ, α|l1, m1; l2, m2). In this way,
performing some straightforward algebra, one can find the following unique transformation
from thelm-representation to the Wigner representation:

ρ(J, φ, θ, α) =
∑

l1,m1,l2,m2

∑
κ,q

√
2κ + 1√
l1 + l2 + 1

δ2J,l1+l2+1

×(−1)l2−m2C
κ,q

l1,m1;l2,−m2
Dκ∗
q,l1−l2(φ, θ, α)ρ(l1, m1|l2, m2) (2.15)

where Dκ
q,l1−l2(φ, θ, α) are WignerD-functions andCκ,ql1,m1;l2,−m2

are Clebsch–Gordan
coefficients [10]. Note that according to this transformation, the valueJ should be discrete:
J = (l1 + l2 + 1)/2.

The reciprocal of (2.15) is

ρ(l1, m1|l2, m2) = 1

8π2

∑
J,κ,q

2J
∫ √

2κ + 1√
l1 + l2 + 1

δ2J,l1+l2+1

×(−1)l2−m2C
κ,q

l1,m1;l2,−m2
Dκ
q,l1−l2(φ, θ, α)ρ(J, φ, θ, α) sinθ dθ dφ dα. (2.16)

3. Wigner representation for symmetrical and arbitrary tops

The orientation of an arbitrary and, in particular, a symmetrical top is defined by the triplet
of Euler anglesψ, β, ξ . Rotating the coordinate system through these angles in the standard
manner [10], one can superimpose the coordinate axes with the main axes of the top. So, the
anglesψ, β have the same meaning as for the rotator, i.e. they define the space orientation of
one main axis of the top, and the angleξ defines additional rotation around this main axis.
Therefore, the density matrix in the coordinate representation is characterized by six angles:
ρ(ψ1, β1, ξ1|ψ2, β2, ξ2) and in the ‘momentum’ orlmk-representation by six integer numbers:
ρ(l1, m1, k1|l2, m2, k2). The relation between these representations is given by the following
expansion in theD-function basis:

ρ(ψ1, β1, ξ1|ψ2, β2, ξ2) =
∑

l1m1k1,l2m2k2

√
(2l1 + 1)(2l2 + 1)

×Dl1∗
m1,k1

(ψ1, β1, ξ1)D
l2
m2,k2

(ψ2, β2, ξ2)ρ(l1m1k1|l2m2k2).

As we can see, unlike the case of the rotator, here the density matrix elementsρ(l1m1k1|l2m2k2)

depend on a new quantum numberk—the value of the angular momentum projection on the
main axis of the top.

The Wigner representation for a symmetrical top may be constructed in the same way
as for a rotator. An additional requirement for deriving the transformation kernel to the
Wigner representation is invariance with respect to rotation around the top axis of symmetry.
Furthermore, we require that the kinematic term in the quantum equation for the density matrix
of a symmetrical top should be transformed to the classical form in the Wigner representation.
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Let us define the Wigner function for the symmetrical top asρ(J, θ, φ, α,K, γ ). Here, the
variablesJ, θ, φ, as before, characterize the value and orientation of the angular momentum,
angleγ defines the rotation of the top around its axis of symmetry andK is the projection of
the moment on this axis. Angleα defines the rotation of the top aroundJ .

The invariance with respect to the rotation of the top around its axis of symmetry gives the
following additional equation for the kernelU of transformation to the Wigner representation:(

∂

∂γ
+
∂

∂ξ1
+
∂

∂ξ2

)
U = 0. (3.1)

In comparison with the rotator case (see equation (2.11)) the kinematic term in the equation
for the symmetrical top’s density matrix acquires a new term

−iε
1

2

(
∂2

∂ξ2
1

− ∂2

∂ξ2
2

)
ρ(ψ1, β1, ξ1|ψ2, β2, ξ2) (3.2)

which has to be transformed to the corresponding classical-like term in the Wigner
representation

εK
∂

∂γ
ρ(J, φ, θ, α,K, γ ). (3.3)

Here, the valueε indicates the difference between the inertia momentI ′ and the other two
identical inertia momentsI : ε = I/I ′ − 1 for a symmetrical top.

The first of these conditions (3.1) for the transformation kernelU(J, θ, φ, α,K, γ |l1,
m1, k1; l2, m2, k2) has the form(

∂

∂γ
− i(k1− k2)

)
U = 0.

Hence, the kernelU depends onγ as

U ∼ eiγ (k1−k2).

The second condition gives

K = k1 + k2

2
.

ThusK, as well asJ , has to be discrete and it may be an integer or half-integer.
So, we can determine the transformation to the Wigner representation fromlmk-

representation for the symmetrical top:

ρ(J, φ, θ, α,K, γ ) =
∑

l1m1k1,l2m2k2

∑
κ,q

√
2κ + 1

l1 + l2 + 1
δ2J,l1+l2+1δ2K,k1+k2e

iγ (k1−k2)

×(−1)l2−m2C
κ,q

l1,m1;l2,−m2
Dκ∗
q,l1−l2(φ, θ, α)ρ(l1, m1, k1|l2, m2, k2). (3.4)

It is easy to test that this transformation turns into the corresponding transformation for
the rotator equation (2.15) if in (3.4) one putsk1 = k2 = 0.

The average in the Wigner representation for the symmetrical top is

〈A〉 =
∑

l1m1k1,l2m2k2

A(l1m1k1|l2m2k2)ρ(l2m2k2|l1m1k1l2m2k2) =
∑
J

J
∑
K

1

2(2π)3

×
∫
A(J, φ, θ, α,K, γ )ρ(J, φ, θ, α,K, γ ) sinθ dθ dφ dα dγ. (3.5)

The quantum mechanical description of an arbitrary top is the same as for the symmetrical
top, so we can suppose that transformation (3.4) is also valid in the case of an arbitrary top.
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4. φθα-representation

Let us represent transformation (2.15) as

ρ(J, φ, θ, α) =
∑
l1,l2

δ2J,l1+l2+1ρl1,l2(φ, θ, α) (4.1)

whereρl1,l2(φ, θ, α) is defined as

ρl1,l2(φ, θ, α) =
∑

κ,q,m1,m2

√
2κ + 1√
l1 + l2 + 1

(−1)l2−m2C
κ,q

l1,m1;l2,−m2
Dκ∗
q,l1−l2(φ, θ, α)ρ(l1, m1|l2, m2)

(4.2)

which we call theφθα-function or theφθα-representation for the density matrix. This function
depends on the anglesθ , φ, andα and it also depends on the quantum numbersl1 andl2.

Thus, we divide transformation (2.15) into two particular transformations; one of
them (4.2) leads to theφθα-representation and the second (4.1) to the complete Wigner
representation of rotator motion.

The transformation inverse to (4.2) is

ρ(l1, m1|l2, m2) = 1

8π2

∫ ∑
κ,q

√
(2κ + 1)(l1 + l2 + 1)

×(−1)l2−m2C
κ,q

l1,m1;l2,−m2
Dκ
q,l1−l2(φ, θ, α)ρl1,l2(φ, θ, α) sinθ dθ dφ dα. (4.3)

It is easy to find out that the average for theφθα-functions has the form

〈Al,l〉 =
∑
l′,m,m′

A(lm|l′m′)ρ(l′m′|lm)

= 1

8π2

∑
l′
(l + l′ + 1)

∫
Al,l′(φ, θ, α)ρl′,l(φ, θ, α) sinθ dθ dφ dα.

Transformation (4.2) can be written as

ρl1,l2(φ, θ, α) =
∑
κ,q

√
2κ + 1√
l1 + l2 + 1

Dκ∗
q,l1−l2(φ, θ, α)ρl1,l2(κ, q). (4.4)

Here,ρl1,l2(κ, q) are the density matrix elements in the irreducible tensor representation

ρl1,l2(κ, q) =
∑
m1,m2

(−1)l2−m2C
κ,q

l1,m1;l2,−m2
ρ(l1, m1|l2, m2).

So, equation (4.4) establishes a relation between theφθα-representation and the irreducible
tensor representation. According to equation (4.4), then, the elements of the density matrix in
the irreducible tensor representation are the coefficients of theφθα-function expansion in the
D-function basis.

Consider the well known equality forD-functions [10]

D
l1∗
m1,l1

(φ, θ, α)D
l2
m2,l2

(φ, θ, α) =
∑
κ,q

(−1)l2−m2C
κ,q

l1,m1;l2,−m2
Dκ∗
q,l1−l2(φ, θ, α)C

κ,l1−l2
l1,l1;l2,−l2

which can be rewritten as

D
l1∗
m1,l1

(φ, θ, α)D
l2
m2,l2

(φ, θ, α)

=
∑
κ,q

Pl1,l2(κ)

√
2κ + 1

l1 + l2 + 1
(−1)l2−m2C

κ,q

l1,m1;l2,−m2
Dκ∗
q,l1−l2(φ, θ, α) (4.5)
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where the factorPl1,l2(κ) is

Pl1,l2(κ) =
√
l1 + l2 + 1

2κ + 1
C
κ,l1−l2
l1,l1;l2,−l2 =

[
(l1 + l2 + 1)(2l1)!(2l2)!

(l1 + l2 + κ + 1)!(l1 + l2 − κ)!
] 1

2

.

In appendix A it is shown that the factorPl1,l2(κ) depends onκ in the formκ(κ + 1).
Therefore, using the property of theD-function

Ĵ2Dκ
q,l1−l2(φ, θ, α) = κ(κ + 1)Dκ

q,l1−l2(φ, θ, α) (4.6)

this factor in equation (4.5) can be replaced by operatorP̂l1,l2 which is a function of the
differential operatorĴ2 and can be removed from the sum in equation (4.5):

D
l1∗
m1,l1

(φ, θ, α)D
l2
m2,l2

(φ, θ, α)

= P̂l1,l2
∑
κ,q

√
2κ + 1

l1 + l2 + 1
(−1)l2−m2C

κ,q

l1,m1;l2,−m2
Dκ∗
q,l1−l2(φ, θ, α). (4.7)

In the casel1 + l2 +1� |l1− l2|we may use the approximation forPl1,l2(Ĵ
2) (see appendix A):

P̂l1,l2 ≈ exp

[
(l1− l2)2 − Ĵ2

2(l1 + l2 + 1)

]
. (4.8)

Using equation (4.7) we can write transformation (4.2) in the form

ρl1,l2(φ, θ, α) = P̂−1
l1,l2

∑
m1,m2

D
l1∗
m1,l1

(φ, θ, α)D
l2
m2,l2

(φ, θ, α)ρ(l1m1|l2m2) (4.9)

and instead of (4.3) the reciprocal transformation can be written

ρ(l1m1|l2m2) = l1 + l2 + 1

8π2

×
∫
D
l1
m1,l1

(φ, θ, α)D
l2∗
m2,l2

(φ, θ, α)P̂−1
l1,l2
ρl1,l2(φ, θ, α) sinθ dθ dφ dα. (4.10)

One can present equation (4.9) in the form

ρl1,l2(φ, θ, α) = P̂−1
l1,l2
ρ−l1,l2(φ, θ)e

iα(l1−l2) (4.11)

where

ρ−l1,l2(φ, θ) =
∑
m1,m2

D
l1∗
m1,l1

(φ, θ,0)Dl2
m2,l2

(φ, θ,0)ρ(l1, m1|l2, m2) (4.12)

is a covariant function in the coherent state representation [1]. Thus, equation (4.11) establishes
the relation between the coherent state and theφθα-representation.

Finally, we establish the relation between theφθα-functions and the representation of
angular momentum orientation which was introduced in [6] (see equation (1.1)). This relation is
valid in the limitl1, l2� 1. Indeed, using asymptotics for the Clebsch–Gordan coefficients [10]

C
κ,q

l1,m1;l2,−m2
= (−1)l2−m2

√
2κ + 1

2l1 + 1
δm1−m2,qD

κ
q,l1−l2(0, θ,0) cosθ = m1 +m2

l1 + l2 + 1

which are valid atl1, l2 � κ, we can replace theD-function in equation (4.2) byCκ,ql1,m1;l2,−m2

and sum overq andκ. In this way it is easy to obtain

ρ̄l1,l2(φ, θ) = ρl1,l2(φ, θ,0) =
∑
m1,m2

δ2M̄,m1+m2
eiφ(m1−m2)ρ(l1, m1|l2, m2)

cosθ = 2M̄

l1 + l2 + 1
.

This coincides with the definition of the Wigner representation of angular momentum
orientation introduced in [6] (equation (1.1)).
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5. Matrix elements of operators in Wigner representations

Here we consider the form acquired by the tensor operators in the Wigner representation.
According to the Wigner–Eckart theorem, any tensor operatorT κ , of rank κ, has the

following matrix elements in thelm-representation:

T κσ (l1, m1|l2, m2) =
T κl1,l2√
2κ + 1

(−1)l2−m2C
κ,σ
l1,m1;l2,−m2

. (5.1)

HereT κl1,l2 is the reduced matrix element of the operatorT κ . If T κ is Hermitian operator the
following equation is valid [11]:

T κl1,l2 = (−1)l1−l2T κ∗l2,l1.
Applying transformation (4.2) to equation (5.1) and summing overm1 andm2, one can

obtain the matrix elements in theφθα-representation:

T
κ,σ
l1,l2
(φ, θ, α) = T κl1,l2√

l1 + l2 + 1
Dκ∗
σ,l1−l2(φ, θ, α). (5.2)

Now consider the form of the tensor operator in the Wigner representation of the rotational
motion of a top. If, in the coordinate system associated with the top, the operator has
componentsT κσ ′ , then in the laboratory coordinate system the operator’s matrix elements in
lmk-representation are [12]:

T κσ (l1, m1, k1|l2, m2, k2) = (−1)k2+m2

√
(2l1 + 1)(2l2 + 1)

2κ + 1
C
κ,σ
l1,m1;l2,−m2

C
κ,σ ′
l1,k1;l2,−k2

T κσ ′ . (5.3)

Applying transformation (3.4) to equation (5.3) and summing overm1,m2 we obtain

T κσ (J, φ, θ, α,K, γ ) =
∑

δ2J,l1+l2+1δ2K,k1+k2(−1)l2+m2

√
(2l1 + 1)(2l2 + 1)√
(l1 + l2 + 1)(2κ + 1)

×Dκ∗
σ,l1−l2(φ, θ, α)e

iσ ′γ C
κ,σ ′
l1,k1;l2,−k2

T κσ ′ . (5.4)

For l1, l2� 1 one can use the asymptotic form of the Clebsch–Gordan coefficients

C
κ,σ ′
l1,k1;l2,−k2

≈ (−1)l2−k2

√
2κ + 1

2l2 + 1
Dκ
σ ′,l1−l2(0, ϑ,0) cosϑ = k1 + k2

l1 + l2 + 1

which allow one to present equation (5.4) in the form

T κσ (J, φ, θ, α,K, γ ) =
∑
1

Dκ∗
σ,1(φ, θ, α)D

κ∗
σ ′,1(γ, ϑ,0)T

κ
σ ′ .

Thus, in the Wigner representation of the top’s motion, the components of the tensor
operator in the laboratory coordinate system and the components in the coordinate system
associated with the top are related by two sequential rotations.

6. Quantum equation in Wigner representation

Usually, the equation for the Wigner function is in integral form and is not convenient for
applications. Therefore, instead of this integral equation, we will derive approximate equations
in differential form.

To obtain these new equations, we takel � 1 as the primary condition. Moreover, we
stipulate that|l1 − l2| � l1, l2 for the matrix elementŝρl1,l2. This assumption is valid if
multipolaricity p of the interaction with the external field is not large. Indeed, the matrix
elements of the interaction potential differ from zero if|l1 − l2| 6 p, and for smallp (for
dipole interactionp = 1, for quadrupole onep = 2, etc), the interactions bind the states which
are not widely spaced from each other in the numbersl1 andl2.
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6.1. Equation for theφθα-function

Now we deduce the quantum equation for the density matrix in the Wigner representation. We
begin by considering how the quantum equation

i
∂

∂t
ρ̂ = [Ĥ , ρ̂] (6.1)

is transformed in theφθα-representation.
By using transformations (4.9) and (4.10) we can obtain the integral equation for the

φθα-function

i
∂

∂t
P̂l1,l2ρl1l2(R) =

(l1 + l3 + 1)(l3 + l2 + 1)

(8π2)2

∫
D
l1
l1l1
(R−1R1)D

l2
l2l2
(R−1

2 R)D
l3
l3l3
(R−1

1 R2)

×([P̂−1
l1l3
Hl1l3(R1)][ P̂

−1
l3l2
ρl3l2(R2)] − [P̂−1

l1l3
ρl1l3(R1)][ P̂

−1
l3l2
Hl3l2(R2)]) dR1 dR2.

(6.2)

Here, for simplicity, we use the notations

ρl1l2(R) = ρl1l2(φ, θ, α) Dl
m1m2

(R) = Dl
m1m2

(φ, θ, α) dR = sinθ dθ dφ dα (6.3)

whereR defines the rotation

R = e−iφĴze−iθĴye−iαĴz

by the triplet of Euler anglesφθα andR−1 defines the inverse rotation toR and the relation

Dl
m1m2

(R) = Dl∗
m2m1

(R−1) (6.4)

is valid. Two consequent rotationsR1 andR2, give the new position of the rotator which is
defined asR1R2 and the following equation is valid:∑

m3

Dl
m1m3

(R1)D
l
m3m2

(R2) = Dl
m1m2

(R1R2). (6.5)

For our purposes the following equality is useful:

P̂l1,l2ρl1l2(R) =
l1 + l2 + 1

8π2

∫
D
l1
l1l1
(R−1R1)D

l2
l2l2
(R−1

1 R)P̂−1
l1l2
ρl1l2(R1) dR1 (6.6)

which can be deduced by using transformations (4.9) and (4.10). It is also easy to deduce by
direct calculation that the following equation is valid:

P̂l1,l2Ĵρl1l2(R) =
l1 + l2 + 1

8π2

∫
D
l1
l1l1
(R−1R1)D

l2
l2l2
(R−1

1 R)P̂−1
l1l2
Ĵρl1l2(R1) dR1. (6.7)

By acting on equation (6.7) with the operatorĴ , one can extend equation (6.7) to any degree
of Ĵ .

Our aim is to derive the differential equation from equation (6.2). This can be done by
using the expansion (see appendix B):

D
l3
l3,l3
(R−1

1 R2) =
2l3∑
k=0

2k(2l3− k)!
(2l3)!k!

[Ĵ k−1D
l3∗
l3,l3
(R1)][ Ĵ

k
+1D

l3
l3,l3
(R2)]

≈ exp

[
Ĵ
(1)
−1 Ĵ

(2)
+1

l3

]
D
l3
l3,l3
(R−1

1 )D
l3
l3,l3
(R2). (6.8)

Here the upper indices of operatorsĴ indicate in which angles,φ1, θ1, α1 or φ2, θ2, α2, they
act. To obtain the last equality in equation (6.8) we make some approximations in the sum
overk: we expand this sum over the infinite limit and keep only the terms such as[

Ĵ
(1)
−1 Ĵ

(2)
+1

l3

]k
(6.9)
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of any degreek and neglect all other terms having, in comparison with (6.9), at least one
additional factor 1/l3.

Next, let us consider the equation (6.2) in the particular system of coordinates where the
z andx axes coincide with vectorJ and the rotator’s axis, respectively. Formally, for this we
have to putR = R−1 = 1 in equation (6.2). Applying expansion (6.8) and integrating by parts
overR1 andR2 while taking into account the following equalities:

Ĵ
(1)
−1D

l1
l1,l1
(R1) = 0 Ĵ

(2)
+1 D

l2
l2,l2
(R−1

2 ) = 0

one can obtain

iP̂l1,l2
∂

∂t
ρl1l2(1) =

(l1 + l3 + 1)(l3 + l2 + 1)

(8π2)2

∫
D
l1
l1l1
(R1)D

l2
l2l2
(R−1

2 )D
l3
l3l3
(R−1

1 )D
l3
l3l3
(R2)

× exp

[
Ĵ
(1)
−1 Ĵ

(2)
+1

l3

]
([P̂−1

l1l3
Hl1l3(R1)][ P̂

−1
l3l2
ρl3l2(R2)]

−[P̂−1
l1l3
ρl1l3(R1)][ P̂

−1
l3l2
Hl3l2(R2)]) dR1 dR2. (6.10)

If we utilize relations (6.6) and (6.7) the last equation can be rewritten in the form:

i
∂

∂t
ρl1,l2(1) =

∑
l3

exp

[
Ĵ
(1)
−1 Ĵ

(2)
+1

l3

]
([P̂−1

l1l3
Hl1l3(1)][ P̂

−1
l3l2
ρl3l2(1)]

−[P̂−1
l1l3
ρl1l3(1)][ P̂

−1
l3l2
Hl3l2(1)])). (6.11)

The upper indices of the operatorsĴ represent the number of the function on which they act,
i.e.

Ĵ
(1)
−1 Ĵ

(2)
+1 AB ≡ (Ĵ−1A)(Ĵ+1B).

Further calculations can be made by using approximation (4.8) for operatorP̂ and the following
well known operator equality

eÂeB̂ = e
1
2 [Â,B̂]eÂ+B̂ = e[Â,B̂]eB̂eÂ (6.12)

which is valid if

[Â, [Â, B̂]] = [B̂, [B̂, Â]] = 0. (6.13)

Of course, being considered asÂ, B̂, the operators in the exponents of equations (4.8), (6.11)
have non-zero commutators (6.13). However, the commutations (6.13) decrease the power of
the operatorĴ by at least two and therefore, according to the accepted approximation, we may
neglect the terms arising due to commutations such as (6.13). Thus, the use of equality (6.12)
in our approximation is justified. Next we make use of the condition that the relations

Ĵ0Vl1,l3(1) = (l3− l1)Vl1,l3(1)
Ĵ0ρl3,l2(1) = (l2 − l3)ρl3,l2(1)

are valid. In this way one can obtain, instead of equation (6.11), the following equation for
theφθα-function:

i
∂

∂t
ρl1,l2(1) =

∑
l3

exp

[
(Ĵ

(1)
−1 Ĵ

(2)
+1 − Ĵ (1)+1 Ĵ

(2)
−1 )

(
1

l1 + l2 + 1
+
l1 + l2 − 2l3

2(l1 + l2 + 1)2

)]
×[Vl1,l3(1)ρl3,l2(1)− ρl1,l3(1)Hl3,l2(1)]. (6.14)

Equation (6.14) is written in the system of coordinates, where the direction of the angular
momentumn(φθ) coincides with thez-axis. Obviously, the operator

Ĵ
(1)
−1 Ĵ

(2)
+1 − Ĵ (1)+1 Ĵ

(2)
−1 (6.15)



6674 K A Nasyrov

is not invariant with respect to coordinate rotation. Therefore, to obtain the equation for the
φθα-function which is valid in an arbitrary system of coordinates, one should replace operator
(6.15) by another operator which is invariant with respect to rotation (a scalar function) and is
equal to (6.15) ifn coincides with thez-axis. The unique operator satisfying these conditions
and which may be constructed using the vectorsĴ (1), Ĵ (2) andn is

ŵ = −in(Ĵ (1) × Ĵ (2)).
The explicit form of this operator is

ŵHρ = −n(Ĵ (1) × Ĵ (2))Hρ
= i

[(
∂

∂φ
− cosθ

∂

∂α

)
H

∂

∂ cosθ
ρ − ∂

∂ cosθ
H

(
∂

∂φ
− cosθ

∂

∂α

)
ρ

]
. (6.16)

In this notation the final equation forφθα-function can be written as

i
∂

∂t
ρl1,l2(R) =

∑
l3

exp

[
iŵ

(
1

l1 + l2 + 1
+

l1− l3
2(l1 + l2 + 1)2

+
l2 − l3

2(l1 + l2 + 1)2

)]
×[Hl1,l3(R)ρl3,l2(R)− ρl1,l3(R)Hl3,l2(R)]. (6.17)

6.2. Equation for the Wigner function of a rotator

Now, let us derive the quantum equation for the rotator Wigner functionρ(J, φ, θ, α). We
recall that the relation betweenρ(J, φ, θ, α)andρl1,l2(φ, θ, α) is established by transformation
(4.1). Applying this transformation to equation (6.17), we have:

i
∂

∂t
ρ(J, φ, θ, α) =

∑
l1,l2,l3

exp

[
iŵ

(
1

2J
+
l1 + l2 − 2l3

8J 2

)]
δ2J,l1+l2+1

×[Hl1,l3(φ, θ, α)ρl3,l2(φ, θ, α)− ρl1,l3(φ, θ, α)Hl3,l2(φ, θ, α)]. (6.18)

By the transformation reciprocal to (4.1)

ρl1,l2(φ, θ, α) =
1

2π

∑
J

δ2J,l1+l2+1

∫ 2π

0
e−i(α1−α)(l1−l2)ρ(J, φ, θ, α1) dα1

we expressHl1,l3(φ, θ, α) andρl3,l2(φ, θ, α) in the right-hand side of equation (6.18) in terms of
the corresponding Wigner functions. Then, summing overl1, l2, l3, we can obtain the integral
equation

i
∂

∂t
ρ(J, φ, θ, α) =

∑
J1,J2,

1

(2π)2
exp

[
iŵ

(
1

2J
− J1 + J2 − 2J

4J 2

)]

×
∫ 2π

0
ei2α(J1−J2)+i2α1(J2−J )−i2α2(J1−J )

×[H(J1, φ, θ, α1)ρ(J2, φ, θ, α2)− ρ(J1, φ, θ, α1)H(J2, φ, θ, α2)] dα1 dα2.

(6.19)

We can then presentH(J1) as

H(J1) = H(J +1J1) = exp

(
1J1

∂

∂J

)
H(J ) 1J1 = J1− J

and the same forρ(J2). Furthermore, the equalities

1Je2i(α−α′)1J = i

2

∂

∂α′
e2i(α−α′)1J = − i

2
e2i(α−α′)1J ∂

∂α′
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(the last of which is obtained by integrating by parts overα′) allow us to replace1J1 and1J2

in equation (6.19) by the rule

1J1→− i

2

∂

∂α2
1J2→ i

2

∂

∂α1
.

Making use of the operator equality (6.12) and the fact that at the limitJ →∞, the sum over
integer and half-integer1J

∞∑
1J=−J

ei2(α−α′)1J → 2πδ(α − α′)

we can obtain the equation for the Wigner function of a rotator:

i
∂

∂t
ρ = exp

[
i

2
Ŵ

]
[Vρ − ρV ] (6.20)

where the new operator̂W is also represented by Poisson brackets

ŴAB = ∂

∂φ
A
∂

∂M
B +

∂

∂α
A
∂

∂J
B − ∂

∂M
A
∂

∂φ
B − ∂

∂J
A
∂

∂α
B. (6.21)

HereM = J cosθ . Note that in equation (6.20)ρ andH are functions ofJ,M, φ, α.
Thus, we can see that the pairsφ,M andα, J play the role of canonical variables.

6.3. Equation for Wigner function of symmetrical and arbitrary top

The equation for the Wigner function of a symmetrical or an arbitrary topρ(J, α,M, φ,K, γ )

can be obtained in a similar way as was done for the rotator’s Wigner function. This equation
has the same form as equation (6.20), with only one difference: the operatorŴ (6.21) should
be generalized as

ŴAB = ∂

∂φ
A
∂

∂M
B +

∂

∂γ
A
∂

∂K
B +

∂

∂α
A
∂

∂J
B − ∂

∂M
A
∂

∂φ
B − ∂

∂K
A
∂

∂γ
B − ∂

∂J
A
∂

∂α
B.

(6.22)

6.4. Classical limit of the quantum equation for Wigner functions

The classical limit of these equations can now be immediately obtained. Let us consider, for
example, equation (6.17) for the Wigner function in theφθα-representation. If we replace the
exponent in equation (6.17) by one (it corresponds to the limitl→∞) we obtain

i
∂

∂t
ρl1,l2(φ, θ, α) = H(0)

l1
ρl1,l2(φ, θ, α)− ρl1,l2(φ, θ, α)H(0)

l2

+
∑
l3

[Vl1,l3(φ, θ, α)ρl3,l2(φ, θ, α)− ρl1,l3(φ, θ, α)Vl3,l2(φ, θ, α)]. (6.23)

Here we putĤ = Ĥ (0) + V̂ , whereĤ (0) is the Hamiltonian of a free atom or molecule andV̂ is
the interaction potential of an external field inducing the transitions between the internal states
of the quantum system. As can be seen from equation (6.23), in the limitl→∞ the dynamic
term in equation (6.23) does not describe the motion of the angular momentum orientation
because the external field causes the transitions between different states without changing the
angular momentum orientation. One feature of these equations is that they have the form of the
equations of a density matrix in the model of non-degenerate states, and the degeneracy upon
projection of angular momentum is included in equation (6.23) as a parametric dependence on
φ, θ, α in V andρ. Thus, all the results obtained for non-degenerate states can be generalized
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by equation (6.23) to the case of degeneracy, and it only remains for us to properly average
overφ, θ, α in the final formulae obtained in the non-degenerate states model.

We must note that equation (6.23) can also be derived using a coherent state representation
[1]. Thus, we may conclude that in the approximation (l→∞), the Wignerφθα and
the coherent state representations lead to an identical description of the angular momentum
orientation of a quantum system.

The next term of the exponential expansion in equation (6.17) gives the new equation for
the Wigner function in theφθα-representation

i
∂

∂t
ρl1,l2(φ, θ, α) = H(0)

l1
ρl1,l2(φ, θ, α)− ρl1,l2(φ, θ, α)H(0)

l2

+
∑
l3

[Vl1,l3(φ, θ, α)ρl3,l2(φ, θ, α)− ρl1,l3(φ, θ, α)Vl2,l2(φ, θ, α)]

+
∑
l3

(
1

l1 + l2 + 1
+
l1 + l2 − 2l3

2(l1 + l2 + 1)2

)
[ŵVl1,l3(φ, θ, α)ρl3,l2(φ, θ, α)

−ŵρl1,l3(φ, θ, α)Vl3,l2(φ, θ, α)]. (6.24)

This equation was derived in [6]. The first dynamic term in equation (6.24) has the same
meaning as in equation (6.23), but the second term describes the angular momentum precession
caused by an external field. To clarify this picture, we consider the equation for a structureless
particle withVl1,l2(φ, θ, α) = δl1,l2V (n). In this case the equation (6.24) is reduced to

∂

∂t
ρ(n) = 1

l

[
∂

∂φ
V (n)

∂

∂ cosθ
ρ(n)− ∂

∂ cosθ
V (n)

∂

∂φ
ρ(n)

]
(6.25)

which has the form of the Liouville equation for a classical rotator.
The classical limit of the equations for the Wigner functions of a rotator or top can be

obtained by the same procedure.

7. Conclusion

We have presented here the Wigner representation of rotational motion. As particular cases,
the Wigner representations of angular momentum orientation, rotational motion of a rotator or
a spherical top, as well as of a symmetrical and an arbitrary top, were considered. The unique
form of transformations which lead to these representations was found on the basis of a set of
natural requirements, including rotational and space reflection invariance, the averaging rule,
the reality of Wigner functions, and the classical form of equations for free-rotational motion.

The relations were established between the Wigner representation of angular momentum
orientation and irreducible tensor operators, coherent states and representation, which was
introduced in [6].

In addition, we derived the equations for the Wigner functions, which have forms
anologous to the equations of translational motion.
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Appendix A

The factor

Pl1,l2(k) =
√
l1 + l2 + 1

2κ + 1
C
κ,l1−l2
l1,l1;l2,−l2 =

[
(l1 + l2 + 1)(2l1)!(2l2)!

(l1 + l2 + κ + 1)!(l1 + l2 − κ)!
] 1

2

can be presented in the following form:

2 logPl1,l2(k) = log

∏κ
n=1(1− n

l1+l2+1)∏κ
n=1(1 + n

l1+l2+1)
− log

∏l1−l2
n=1 (1− n

l1+l2+1)∏l1−l2−1
n=0 (1 + n

l1+l2+1)

=
l1−l2−1∑
n=0

log

(
1 +

n

l1 + l2 + 1

)
−

l1−l2∑
n=1

log

(
1− n

l1 + l2 + 1

)
+

κ∑
n=1

log

(
1− n

l1 + l2 + 1

)
−

κ∑
n=1

log

(
1 +

n

l1 + l2 + 1

)
.

Expanding the logarithms in a Taylor series with respect to the parametern/(l1 + l2 + 1) and
summing overn [13], we arrive at

logPl1,l2(k) ≈
(l1− l2)2 − κ(κ + 1)

2(l1 + l2 + 1)
+ · · · .

Appendix B

According to (6.5)Dl
l,l(R

−1
1 R2) can be expressed as

Dl
l,l(R

−1
1 R2) =

l∑
m=−l

Dl∗
m,l(φ1, θ1, α1)D

l
m,l(φ2, θ2, α2). (B.1)

From the property of theD-functions [10]

Ĵ+1D
l
m,l(φ, θ, α) =

√
(l +m)(l −m + 1)

2
Dl
m−1,l(φ, θ, α)

it follows

Dl
l−k,l(φ, θ, α) =

√
2k(2l − k)!
(2l)!k!

Ĵ k+1D
l
l,l(φ, θ, α).

Using this equation and̂J−1 = Ĵ ∗+1 one can rewrite equation (B.1) as

Dl
l,l(R

−1
1 R2) =

2l∑
k=0

2k(2l − k)!
(2l)!k!

(Ĵ
(1)
−1 Ĵ

(2)
+1 )

kDl∗
l,l(φ1, θ1, α1)D

l
l,l(φ2, θ2, α2)

=
2l∑
k=0

2k(2l − k)!
(2l)!k!

(Ĵ
(1)
−1 Ĵ

(2)
+1 )

kDl
l,l(R

−1
1 )Dl

l,l(R2).
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